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AC response of fractal metal-electrolyte interfaces 

H Ruiz-Estradat, R Blender1 and W Dieterich 
Fakultst F~ Physik, UniversitZt Konstanz. UniversitWsuasse 10, D-78464 Konstanz, Germany 

Received 21 April 1994, in final form 12 September 1994 

Abstract. The problem of the so-called consfant phase angle (CPA) behaviour in the frequency- 
dependent impedance of an elecholyte in contact with a rough metallic elecuode is studied by a 
numerical treatment and by real-space renormalization of two-dimensional elecnical networks. 
Deterministic and disordered fractal boundaries based on quadratic Koch curves are considered. 
Both methods indicate that the CPA exponent r )  can be estimated qualitatively from both the 
fractal dimension of the interface and from the scaling of the high-frequency response with 
system size. 

1. Introduction 

The low-frequency impedance ( w  < IOs Hz) of liquid or solid electrolytes in contact with a 
metallic electrode typically shows an anomalous frequency dependence, often represented as 
a power law Z(w) - Z(w)  c( (w)-". In the ideal case of a perfectly planar electrode, one 
expects an impedance corresponding to the electrolyte resistance in series with a double- 
layer capacitance, and hence 7 = 1. Experiments, however, often yield exponents 0 < q c 1 
over several decades of frequency, a behaviour known as the 'constant phase angle (CPA)' 
response and usually attributed to irregularities in the interfacial geometry. The relationship 
between the dynamic exponent 7 and the geometry of a rough interface has been subject to 
much attention in recent years. In particular, the idea that disordered structures can often 
be modelled by fractals has initiated a number of studies of fractal electrodes (Le M6haut.i 
and Crepy 1983; for a review and recent literature, see Sapoval 1991). 

Theoretically, one may use a discretized description and start from an equivalent circuit 
containing constant conductances ub within the electrolyte region and conductance elements 
0;: = iwC, C,being the double-layer capacitance per unit area, which connect the electrolyte 
with the electrode; This is, of course, a poor description of fed~electrolyte-electrode 
processes. However, such models account for the essential aspect that, in the presence 
of a voltage V(r) = V&" applied to the system, different frequencies w will explore 
different geometrical characteristics of the fractal interface. Clearly, at high frequencies, 
those parts of the electrode that are closest to the counter-electrode will carry most of the 
current, whereas remote pats will be shielded. By lowering the frequency, the equipotential 
surfaces will penetrate the deeper cavities, which in turn participate in the current transport. 
The multifractal nature of the resulting electrostatic potential problem has been emphasized 
recently by Geertsma et af (1989) and by Halsey and Leibig (1991). Therefore, in general, 
one cannot expect that q is a function of merely the fractal dimension D of the. interface. 
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Numerical studies of these questions for two-dimensional systems essentially followed 
two dieerent routes. Blender eta1 (1990) considered a quadratic Koch curve with D = 1.5 
and solved for the complex electrostatic potential by a relaxation method. From calculations 
up to stage N = 4 in the fractal construction they found a dynamic impedance whose 
imaginary part is well represented by a power law within about three decades in frequency. 
The exponent was found to be q N 0.6 and therefore close to but significantly smaller than 
that expected from the relation 11 = D-', which was suggested previously (Le M6haut6 
and Crepy 1983). Meakin and Sapoval (1991, 1992) and Sapoval e t a l  (1993) exploited 
the formal analogy between electrostatic and random walk problems (Chandrasekhar 1943, 
Pietronero and Wiesmann 1984). Using the random walk approach they calculated the 
impedance along the real axis of ui values for electrodes of the form of diffusion-limited 
aggregation (DLA) clusters as well as for porous electrodes, and gave arguments that r~ is 
well approximated by t~ e 1 / D  in the case of DLA structures. 

In this paper we again employ the relaxation method, where the calculated imaginary 
part Im Z(o) is directly sensitive to interfacial properties entering via the imaginary interface 
conductance ai = i d .  This allows us to detect numerically a non-trivial scaling of the 
high-frequency impedance with respect to the system size. A simple interpolation scheme 
is proposed, wherein the exponent I ]  is estimated from properties of the interface in the low- 
and high-frequency limit. This scheme is compared with calculations for the quadratic Koch- 
curve with D = 1.5 and modifications thereof, including disordered structures. Furthermore, 
we show that by a renormalization procedure using successively larger cells we obtain 
semiquantitative agreement with our numerical results. 

2. Quadratic Koch boundary 

In this section we study a two-dimensional model of an electrochemical cell consisting of an 
electrolyte between an electrode of the form of a quadratic Koch curve and a planar counter- 
electrode. In constructing our model we follow Blender etal (1990). The Koch electrode 
is generated as shown in figure I(a) and has a fractal dimension D = In8/In4 = 1.5. 
At stage N (N 2 1) in our construction we start from a square lattice of size L x L 
with L = 4N and incorporate the Koch curve as illustrated in figure l(b) for both N = 1 
and N = 2. Note that each of its elementary segments intersects one lattice bond, and 
these bonds are regarded as interface conductances uj = ioC. Within the remaining bonds 
between the Koch electrode and the upper edge of the system (the counter-electrode) we 
associate constant (real) conductances a b ,  which represent the bulk electrolyte. Boundary 
conditions are chosen such that the counter-electrode, i.e. the lattice points in the upper 
edge of our lattice are held at a fixed potential V = I, whereas V = 0 at the endpoints of 
interface bonds below the Koch electrode. Periodic boundary conditions are applied in the 
horizontal directions. The Kirchhoff equations for the network are solved by a relaxation 
method. It turns out that with an increasing number of iterations the total current calculated 
at the counter-electrode and the total current across the Koch electrode provide upper and 
lower bounds of the exact current, which tend to converge to a common limit. The iteration 
is continued until both quantities agree to within an error of about 

Clearly, the impedance of the system at stage N can be written as ZN(UI,,U~) = 
u;'fN(ix), where x = oC/u~,. Data for its imaginary part me shown in figure 2 for 
N = 2 and N = 4. In accordance with previous findings (Blender et al 1990) three 
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Figure 1. (a) Generation of the Koch curve elec- 
uode. (b) Electrical network of bulk conductances 
ob (-) and interface conductances q (. . . . . .) 
across the Koch boundarj at stage N = 1. One of 
the basic squares is subdivided according to stage 
N = 2. 

regimes are clearly identified with the following characteristic behaviour of Im Z N :  

In the low-frequency regime the current is limited predominantly by the Koch interface 
and hence is simply proportional to the number of interface bonds, S N  = qDN. This leads 
immediately to ( la) .  The crossover to that regime occurs near the frequency 0; determined 
by 

X G  = 0;c/Ob = 4-DN.  (2) 

Simultaneously we observe that Re Z N  saturates with decreasing frequency and also becomes 
independent of N .  

In the intermediate ‘anomalous’ regime our results tend to follow a power law (Ib), 
with an exponent 11 < 1 as N increases. For N = 4 an excellent fit is achieved with 
11 N 0.60 f 0.01 over about three orders of magnitude in frequency. Correspondingly, 
Re ZN shows dispersion connecting its low- and high-frequency limits. Representative data 
points for Re ZN with N = 4 are included in 6gure 4; see also the discussion in our previous 
work (Blender et a1 1990). 

Finally, for frequencies such that x >> 1, we again have ReZN independent of 
N, whereas ImZN is given by ( I C ) .  We now analyse more closely the prefactor B N .  
Calculations up to N = 5 in the high-frequency range indicate that as N increases, BNIBN-1 
tends to a constant that is smaller than 4. (In fact, we find &/BZ N 3.87, B4/B3 N 3.69 and 
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Figure 2. Imaginary p m  of the impedance against frequency. Data points are from numerical 
calculations for N = 2 (x)  and N = 4 (0). Full curves are from an improved renormalization, 
see section 4. obtained by exuapolatiig fist-order and second-order rrsults as indicated in the 
inset. The straight line corresponds to a behaviour Im ZN - of the data for N = 4. 

log xi 0 logx 

Figure 3. Illustration of our scheme of 
estimating q from the N dependence of 
the imaginary part Im ZN ac low and high 
frequencies. 

BSI& 2 3.6610.1.) With this hypothesis let us consider large N and define B N / B N - I  = 4r ,  
or 

EN N 4rN (3) 

with T N 0.94 f 0.02. Hence, for x >> 1 fix@, log(-q,ImZN) N - N b  for large 
N ,  with b = slog4. Similarly, for x << x; fixed, log(-ubImZN) 2 - N a  for large 
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N ,  with a = Dlog4, see equation (la). Since logx; = -Na we are thus led to the 
following interpolation scheme for estimating q. From the behaviour of Im Z, for large N 
schematically depicted in figurc 3, it is obvious that the straight lines in the intermediate 
regime x i  << x << 1 have a slope -q with q = b/a or 

q = t / D .  (4) 

Thus q is expressed by two exponents: the fractal dimension, D, which enters via the 
low-frequency behaviour governed by the total length of the boundary, and the exponent, 7 ,  
related to the high-frequency regime, which is determined by the geometry of protrusions 
in the boundary. Using the above estimate for 5 and D = 1.5, equation (3) predicts 
q N 0.62=t0.01, in remarkable agreement with the numerical value given above. Formally, 
continuity of ImZN at the two crossover frequencies x = x i  and x = 1 suggests that 
instead of (1) we write 

In this form, the dependence of the impedance in the intermediate regime on N is made 
explicit, CN = l / x ; ,  and equation (5c) implies that ( x i ; ) " B ~  = 1 ,  which leads to equation 
(4). In fact, equation (4) agrees with arecent suggestion by Halsey and Leibig (1991). Their 
results, based on a Green function representation of the problem, imply a high-frequency 
expansion of the impedance, with the two leading terms (x  + CO) 

and 

Here the summation is over the endpoints i of interface bonds 'above' the boundary and 
j i  denotes the current entering i via bulk (electrolyte) conductances, which is derived from 
the electrostatic potential in the cell at infinite frequencies. Comparing (7) with (IC) and 
(3) it follows that EN is proportional to the second moment of the 'harmonic measwe' j i ,  
whose scaling with the system size L = 4" is characterized by the multifractal exponent 
r (2) ,  and thus we have 7 

In connection with self-similar electrodes, attention has been drawn recently to the 
concept of the 'information fractal' (Sapoval et al 1993). which in our discrete case is the 
subset of interfacial points i that dominates the sum xi j i .  For d = 2 its dimension is 
unity. This may reflect itself in the fact that ReZ(w + oo), determined by (6), becomes 
independent of L as in the case of non-fractal interfaces. 

r (2) .  

3. Generalized Koch boundaries 

For a further test of the relation (4) we now investigate some modifications of the interfacial 
geometry. First, consider the modified generator in figure 4(u), where in comparison with 
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Figure 4. Real (a)  and imaginary pan (b) of the impedance against frequency for the 
modified Koch fractal. see the generator in the inset, at N = 4 (full circles). The results 
according to the generator figure I(o) are also shown for comparison (open circles). Full and 
open circles become indistinguishable for o C j a  > IOw2. Full and broken c w e s ,  respectively, 
are Lhc results from first-order renormalization. see section 4. The straight line in (b) bas a slope 
-9 with ii = 0.70. 

figure l(a) the cavity is removed. From the foregoing discussion we expect that the high- 
frequency behaviour of the impedance and therefore the exponent t remain essentially 
unchanged in comparison with section 2, whereas the low-frequency behaviour is now 
given by (la) with D replaced by 3 = In6/ In4 N 1.29. Hence equation (4) predicts that 
i j  N 0.73 . Numerical results for both Re ZN and Im ZN are plotted in figure 4 for N = 4. 
The corresponding data for the Koch boundary considered in section 2 are also shown for 
comparison and, indeed, both agree at high frequencies. Although the dispersive regime 
is reduced in the present case (x; N a power law fit, equation (Ib), appears to be 
reasonable, which yields i j  E 0.70 zk 0.02. This value is in good agreement with the above 
estimate. 

Next we introduce structural disorder into our system. A disordered boundary is obtained 
by applying the generator of figure I(a) with probability (1 - p )  to each of the smallest 
segments at a given stage N; with probability p the considered segment remains unchanged 
(see figure 5). The case p = 0 corresponds to the deterministic construction considered 
before. This procedure generates a family of boundarjes whose dimension is approximately 
given by D ( p )  = In[4p+4D(1-p)]/ln4, with D = D(0). For our numerical calculation we 
choose p = 0.5 and average the impedance over about 30 configurations of the boundary. 
From a set of data in the dispersive regime, see figure 5 ,  we find q(p)  2 0.72 i 0.02. 
In a similar way we randomize the modified generator of figure 4(a). The result for the 
CPA exponent in that case is i j (p)  N 0.81 f. 0.02. Assuming again the same high-frequency 
behaviour in both of these cases, we expect from (4) a ratio q(p)/ i j (p) = z ( ( p ) / D ( p )  0.9 
for p = 0.5, in good agreement with the numerical values for ~ ( p )  and sj(p) given above. 

4. Position-space renormalization 

The self-similar stlllcture of the Koch boundary in our model of section 2 suggests the 
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Figure 5. Generation of randomized Koch fractals 
and the corresponding impedance obtained from a . .  
first-order simulation for N = 4 (data points) and 

-5 -3 -I 1 3 from renormdimtion (full c w e s ,  see section 4). 
The slraight line has a slope -0.72. log [ W C / U b )  

---c ($1) 

Figure 6. Definition of the renormalized (first- 
order) interface conductace c:), 

application of suitable renormalization schemes. A simple but efficient scheme, which we 
call here first-order renormalization, has been proposed previously by Blender et a1 (1990). 
Here, let us recall it briefly and then generalize it to larger cells and also to disordered 
boundaries. 

First, it is straightforward to calculate exactly the conductance XI (q) = 2;' for general 
complex arguments. Next, our system at stage N is mapped onto a system at stage (N - l), 
which involves a renormalized interface conductance 0:). Thereby the bulk conductance 
remains unchanged. The transformed conductance 0:) should represent the conductance 
properties of a 4 x 4 cell connected to the interface. Hence we approximate it by the 
conductance of the cell shown in figure 6 in the vertical direction. After ( N  - 1) iterations 
we thus obtain a renormalized conductance Finally, we can write the approximate 
relation 

which for large N was found to develop a power law behaviour ImZN - OJ-'II. The 
exponent 111 Y 0.76, however, turned out to be substantially larger than the numerical value 
q N 0.60 (see section 2). 
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Improved renormalization schemes can be devised by treating larger cells, but can be 
carried through only numerically. Consider first the quantity Xz(ui) = Z;'. A renormalized 
interface conductance 5:) is now obtained in analogy to the foregoing discussion by going 
in figure 6 to the next higher stage of a 16 x 16 cell. Writing 5y-l) for the ( N  - 1) iterate 
of U;, we obtain the second-order approximation 

Clearly, one could proceed in this manner to higher-order schemes. 
Numerical data shown in figure 2 for N = 2 are, by construction, identical with &(U;). 

An approximation to the data for N = 4 is obtained from (9) in the form Z;' = Zz(Cy)), 
which is more accurate than the first-order result. We can, however, improve further and 
use the first-order ( R  = 1) and second-order ( R  = 2) result in an extrapolation to the 
desired fourth-order result ZY1 = %(ut). This is illusrrated in the inset of figure 2, which 
shows a linear extrapolation in the plot log(-ubIm 2,) against the inverse order R-I at a 
particular frequency. Concerning computing time, this procedure is much faster than the 
full computation of Z,. In this way we obtain the full curves in figure 2 for N = 4 and, 
analogously, for N = 6. A substantial improvement over the simple first-order scheme is 
thereby achieved, in particular in the interesting range of intermediate and high frequencies. 
Exponents q and r found in this way are q N 0.62 and t N 0.95, which compare very well 
with the full calculation for N = 4. 

Finally, we indicate an extension of our first-order procedure to disordered interfaces 
of the type discussed in section 3. The renormalized interface conductance is simply taken 

with numerical results. 
as ui (1) ( p )  = (1 - p)u?) + pu;. This leads to the curves shown in figure 5 in comparison 

5. Concluding remarks 

We studied the AC response of two-dimensional electrical networks with capacitive coupling 
to fractal boundaries. Models of this type pertain to the long-standing problem of the 
dynamic impedance of an electrochemical cell containing a perfectly blocking electrode of 
irregular shape. Our main objective was to examine the role of different factors determining 
the CPA exponent q. which characterizes the AC-response at intermediate frequencies. 
Results for quadratic Koch curve boundaries and modifications thereof suggest the following 
qualitative analysis. The exponent q is essentially given by interpolating between the 
high- and low-frequency behaviour of the imaginary part Im ZN. At low frequencies the 
dependence of this quantity on the stage N in the fractal construction immediately follows 
from the fractal dimension D of the interface. However, the high-frequency part of Im ZN, 
which is essentially determined by the protrusions of the boundary, shows non-trivial sczling 
with the system size L. We verified this observation by numerical simularion and also by 
renormalization, which was found to agree semiquantitatively with our simulations. Our 
findings are in accordance with recent work by Halsey and Leibig (1991) and lead to 
significant deviations from the relation q = 1/D. On the other hand, comparing boundary 
geometries with different D but with protrusions of the same geometry, the CPA exponent 
then varies as q = constant/D. 
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